Как повысить КПД электродвигателя: выбираем решение
В настоящее время электромеханические преобразователи считаются одними из самых эффективных технических решений, однако в процессе их эксплуатации возникает ряд проблем. К ним относятся потери энергии по различным причинам - магнитные, электрические и механические – которые сопровождаются тепловым излучением, а также шумом и вибрацией. Эти процессы являются результатом трения элементов, перемагничивания в магнитном поле сердечника якоря электродвигателя, а также скачков нагрузок. Но возможно ли сократить так называемые "утечки" и повысить КПД? Об этом мы поговорим в данной статье.
Современные методы увеличения эффективности работы асинхронных двигателей
Существует общепринятая классификация электрических машин на синхронные, у которых частота вращения ротора совпадает с частотой магнитного поля, и на асинхронные, где магнитное поле вращается с более высокой скоростью, чем ротор.
Электродвигатели последнего типа на сегодняшний день являются наиболее распространенными: около 90% всех двигателей, используемых в мире, являются асинхронными. Они применяются во многих отраслях промышленности, сельского хозяйства и сферы ЖКХ.
Это объясняется тем, что они просты в изготовлении, надежны, доступны по цене и не требуют больших эксплуатационных затрат. Кроме того, КПД асинхронных электродвигателей значительно выше, чем синхронных.
Тем не менее, у такой техники есть и существенные недостатки. Один из них – это высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что приводит к резкому увеличению силы тока и избыточным механическим нагрузкам при запуске и пониженной производительности в периоды пониженной нагрузки), невозможность точной регулировки скорости работы и так далее. В результате все эти факторы приводят к значительному снижению эффективности работы.
Чтобы справиться с этими проблемами, специалисты используют различные методы, направленные на повышение КПД асинхронных двигателей. Одним из них является использование частотных преобразователей, которые уменьшают пусковой ток, и, следовательно, пусковую мощность двигателя. Кроме этого, применяются специальные системы управления моментом, которые позволяют точно регулировать мощность двигателя и его скорость в зависимости от потребностей. Это повышает производительность механизма и уменьшает избыточную механическую нагрузку. Также существуют специальные схемы управления током, которые минимизируют потери энергии в механизме и увеличивают его КПД. Все эти методы позволяют достичь более эффективной работы асинхронных двигателей.
Возможности оптимизаторов-контроллеров применения оборудования в промышленности, сельском хозяйстве и сфере жилищно-коммунального хозяйства переносят эффективность дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования на новый уровень. Они предотвращают перегрузки кронштейнов при запуске мешалок, нейтрализуют гидроудары в трубопроводах и обеспечивают плавный запуск тяжело и очень тяжело нагруженного оборудования, для чего обычные устройства плавного пуска не подходят.
Цена
Контроллеры-оптимизаторы являются весьма эффективными приборами, позволяющими увеличить КПД оборудования. Кроме того, они оказываются более доступными по цене, если сравнивать их с преобразователями. Например, на отечественном рынке можно купить устройство мощностью 90 кВт за сумму около 90–140 тысяч рублей.
Достоинства и недостатки контроллеров-оптимизаторов
Контроллеры-оптимизаторы могут быстро реагировать на изменение напряжения, что снижает расходы электроэнергии на 30–40%, сокращает влияние реактивной нагрузки на сеть, повышает КПД привода, позволяет сократить расходы на конденсаторные компенсирующие устройства, а также продлевает срок службы оборудования и повышает экологичность производства. Отличительной особенностью контроллеров также является более доступная цена по сравнению с преобразователями частоты.
Однако стоит отметить, что контроллеры-оптимизаторы имеют ограничение в использовании в тех случаях, когда необходимо изменять скорость вращения электродвигателя. Таким образом, при выборе контроллера следует учитывать этот момент и выбирать оптимальный вариант, учитывая конкретную ситуацию и потребности.
Как выбрать лучшее оборудование для повышения КПД
Если вы планируете повысить КПД двигателя своего оборудования, важно правильно выбрать устройство для этой задачи. Выбор будет зависеть от особенностей работы оборудования. Если необходимо изменять скорость привода, то единственно подходящим решением будет приобретение преобразователя частоты. Однако, если скорость вращения двигателя остается неизменной или не требует большой точности изменения, то лучшим решением будет использование контроллеров-оптимизаторов. Они имеют более доступную стоимость по сравнению с преобразователями частоты.
На заметку: как повысить КПД электродвигателя
Если вы занимаетесь эксплуатацией электроприводов, то знаете, что их эффективность напрямую зависит от ряда факторов: степени загрузки по отношению к номинальной, конструкции, модели, степени износа и отклонения напряжения в сети от номинального. Кроме того, КПД электродвигателя может заметно снизиться после перемотки.
Чтобы оптимизировать работу электропривода, необходимо обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и, если возможно, частоту подаваемого тока. Для этого применяется специальное оборудование, позволяющее повысить КПД электродвигателя. Однако не всегда возможно или целесообразно реализовать все перечисленные меры.
Наиболее востребованные приборы, которые позволяют улучшить работу электродвигателя, – это частотные преобразователи и устройства плавного пуска. Первые изменяют скорость вращения двигателя путем изменения частоты питающего напряжения, а вторые ограничивают скорость нарастания пускового тока и его максимальное значение.
В данной статье мы рассмотрим современные решения для повышения КПД электродвигателей с точки зрения их эффективности работы и экономической целесообразности.
Частотные преобразователи используются для улучшения работы асинхронных двигателей. Они способны изменять однофазное или трехфазное напряжение с частотой 50 Гц, превращая его в напряжение с настраиваемой частотой, которая обычно варьируется от 1 до 300-400 Гц, но может достигать и 3000 Гц. Более того, преобразователи регулируют также амплитуду напряжения. Это позволяет добиться значительного повышения эффективности работы электродвигателя.
Преобразователь частоты, известный также как «частотник», содержит в себе микропроцессор для управления электронными ключами и защиты оборудования, а также схемы, которые работают в качестве ключей и открывают тиристоры или транзисторы. Тиристорные преобразователи частоты более эффективны благодаря способности работать с высокими напряжениями и токами и достигать КПД до 98%, но это преимущество становится практически незаметным при небольших мощностях.
Существуют два класса преобразователей частоты, которые отличаются устройством и принципами работы:
- Преобразователи с непосредственной связью представляют собой выпрямители. В результате отпирания тиристоров и подключения обмотки к сети формируется выходное напряжение с ограниченным диапазоном управления скоростью вращения привода и частотой 0–30 Гц. Однако такие преобразователи не подходят для оснащения мощного оборудования, регулирующего множество технологических параметров.
- Преобразователи с промежуточным звеном постоянного тока производят двойное преобразование энергии: входное напряжение выпрямляется, затем фильтруется и сглаживается, а потом при помощи инвертора снова трансформируется в напряжение с необходимой амплитудой и частотой. Хотя такое преобразование может снижать КПД оборудования, преобразователи частоты второго типа имеют широкое применение благодаря способности давать на выходе напряжение с высокой частотой.
Одним из наиболее популярных типов преобразователей частоты являются устройства второго типа, которые обеспечивают плавную регулировку оборотов двигателей.
Варианты преобразователей, используемые в современных системах управления электроприводами, различаются по своим функциональным возможностям и эффективности применения. Для электроприводов насосов или вентиляторов, например, часто применяются преобразователи с невысокой перегрузочной способностью и U/f-управлением, способные легко управлять начальным значением напряжения для повышения момента двигателя на низких частотах.
Но для более серьезных применений, таких как на прокатных станах, конвейерах, подъемных устройствах и упаковочном оборудовании, рекомендуется использовать частотные преобразователи с векторным управлением. Они не только могут регулировать частоту и амплитуду выходного напряжения, но и фазы тока через обмотки статора.
Торможение двигателя также может быть контролируемым с помощью специальных функций замедления, главным образом управляемых «частотниками», оснащенными встроенными или внешними блоками торможения и тормозным резистором, а также рекуперативным блоком торможения во время динамического торможения. Такие устройства особенно важны для механизмов станков и конвейеров.
Некоторые комплексные системы, например, в робототехнике, дерево- и металлообработке, используют сложные частотные преобразователи с обратной связью, которые обеспечивают повышенную точность и надежность в замкнутых системах для поддержания постоянной скорости вращения в условиях переменной нагрузки.
В последние годы цены на частотные преобразователи подвержены высокой волатильности, как отмечают финансисты. За прошедший год-полтора их стоимость значительно выросла. Такой рост цен можно объяснить не только колебаниями валютного курса, но и другими факторами.
В 2021 году стоимость частотных преобразователей мощностью 90 кВт от российских и зарубежных производителей варьировалась в районе от 200 до 700 тысяч рублей, в зависимости от производителя.
В данном случае мы имеем преобразователь частоты, который используется для асинхронного двигателя. Описав его рабочий принцип выше, можно утверждать, что данный прибор способен уменьшить затраты электроэнергии, обеспечить плавный запуск механизма, обеспечить точное регулирование скорости вращения при изменяющейся нагрузке и увеличить пусковой момент. Кроме того, все вышеперечисленное в сумме ведет к увеличению коэффициента полезного действия машины.
Несмотря на эти очевидные преимущества, следует отметить некоторые недостатки такого «частотника». В первую очередь, стоит заметить его достаточно высокую стоимость. Кроме того, в процессе эксплуатации преобразователь может создавать электромагнитные помехи.
Существуют устройства плавного пуска (УПП), которые используются для обеспечения плавного запуска, разгона и остановки электродвигателя. Они ограничивают скорость увеличения пускового тока в течение определенного времени. Однако традиционные устройства плавного пуска не способны повысить КПД и могут применяться только для управления приводами с небольшой нагрузкой на валу.
Контроллеры-оптимизаторы - это разновидности УПП, которые позволяют повысить энергоэффективность двигателей. Они согласовывают крутящий момент с моментом нагрузки и способствуют снижению потребления электроэнергии на минимальных нагрузках на 30–40%. Контроллеры-оптимизаторы предназначены для приводов, которые не нуждаются в изменении числа оборотов двигателя.
Например, эскалатор потребляет большое количество энергии, и для снижения энергопотребления при помощи преобразователя частоты, нужно уменьшить скорость эскалатора. Однако, это невозможно, так как это увеличит время подъема пассажиров. Контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.
Контроллеры-оптимизаторы – это устройства, которые выполняют функцию регуляторов напряжения для питания электродвигателей. Они предоставляют контроль над фазами напряжения и тока, обеспечивают полное управление приводом на всех этапах работы и защищают его от повышенного и пониженного напряжения, перегрузки, обрыва или нарушения чередования фазы и т.д.
Контроллеры-оптимизаторы также согласовывают значение крутящего момента, развиваемого электродвигателем, с его нагрузкой на валу, путем изменения напряжения для питания двигателя. В процессе регулирования крутящего момента скорость вращения ротора остается прежней, а коэффициент мощности повышается. Это оборудование является функционально законченным и не требует подключения дополнительных устройств.
В период работы привода в условиях динамически изменяющихся нагрузок контроллер обеспечивает прекращение отбора мощности из сети электропитания в те моменты, когда полупроводниковые переходы тиристоров (управляемых диодов) задерживают электрический ток. Размыкание тиристоров происходит периодически при поступлении управляющих сигналов, период, задержка которых определяется относительным значением загрузки привода.
Важно помнить, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.
Фото: freepik.com